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Abstract

We describe a three-parameter cloud/aerosol size distribution based on the gener-

alized inverse Gaussian density function that provides a simple and convenient recipe

for characterizing aerosol radiative properties. The feature that makes this distribution

attractive is that all of its moments can be calculated analytically providing simple

formulas for the e�ective radius and variance and relating these to other important

quantities such as the particle number and mass densities. Another advantage of this

distribution is the smooth exponential cut-o� not only for large particles sizes but also in

small particles regime which prevents the singularity that occurs at zero size for large

e�ective variances for distributions like the popular gamma distribution. Unlike most

size distributions in current use the proposed functional form has a third-parameter

(order) which provides greater ¯exibility in representing di�erent distributional shapes.

Analytical expressions for the moments of the generalized inverse Gaussian distribution

in the generic case contain ratios of modi®ed Bessel functions, however for half-integer

orders these expressions are simple ratios of polynomials. As a practical example we

compare extinction e�ciency factors and asymmetry parameters computed for several

di�erent orders of the proposed distribution function. Ó 2000 Published by Elsevier

Science Inc. All rights reserved.
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1. Introduction

For radiative transfer purposes, the area weighted e�ective radius reff and
e�ective variance veff provide a robust description of the size distribution of
cloud or aerosol particles. This has been shown to hold true in radiative
transfer modeling of re¯ected and transmitted light for a wide range of popular
size distributions such as the gamma, power law, and log-normal distributions
[1]. This however is not the case for other important quantities such as the
particle number density and the concentration of cloud condensation nuclei
(CCN), which may di�er by orders of magnitude between the gamma and log-
normal distributions having identical values of reff and veff , particularly when
the e�ective variance is large. To address the problem quantitatively and to
provide more options for relating the particle number and mass densities to the
area weighted radiative parameters we propose to adopt the generalized inverse
Gaussian distribution as a new cloud/aerosol particle size distribution.

The inverse Gaussian distribution is known to mathematical and physical
communities since 1915 when it was used independently by Schr�odinger and
Smoluchovski in their works on Brownian motion. Comprehensive review of
its statistical properties and applications along with historical notes and ex-
tensive bibliography can be found in [2]. Here we note only that the name
``inverse Gaussian'' comes from the observation that the cumulant function of
this distribution is the inverse of the cumulant function of the normal law.
Below we refer to this original distribution as the ``standard'' distribution.

The inverse Gaussian function was introduced to radiative transfer theory
by Malkmus [3] in 1967 as an alternative to the statistical (Goody) model to
describe more accurately the probability density distribution of absorption
coe�cient strengths for water vapor. Since then, partly because of its desirable
analytic properties, this distribution has found wide use in radiative transfer
modeling of non-gray gaseous absorption (see e.g., [4,5]).

The generalization of the inverse Gaussian distribution (by adding an extra
parameter (order)) was proposed in 1953 by Good [6]. A thorough analysis of
the statistical properties of this generalized distribution is presented in [7]. In
the present study we propose adoption of the generalized inverse Gaussian
density function as a useful and ¯exible model for cloud and aerosol particle
size distributions. Using this distribution in Mie theory computations provides
the standard representation of aerosol radiative parameters (such as extinction
e�ciency factor and asymmetry parameter) with an additional dependence on
the distribution order.

Advantages of this type of distribution include simple analytical expressions
for all of its moments, e�ective radius and variance, as well as smooth expo-
nential cut-o� not only for large particles sizes but also in small particle region.
This prevents the singularity at zero size for large e�ective variances. (Such
singularity is a characteristic of the gamma distribution.) The proposed
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distribution has a third-parameter (order) in addition to e�ective radius and
variance which accommodates a variety of di�erent functional shapes.

Below we give de®nitions of the generalized inverse Gaussian distribution
and present explicit expressions for moments, e�ective radius and variance
both in general and for some important speci®c cases. Following this we dis-
cuss the application of this distribution in Mie theory computations of the
extinction e�ciency factor and asymmetry parameter for typical aerosol par-
ticle size ranges.

2. General form

We de®ne the generalized inverse Gaussian particle size distribution func-
tion by the formula

nm�r� � 1

2Km�1�1=w�
rm

sm�1
exp

�
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�
� r
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��
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where r is particle radius, Kl the modi®ed Bessel function of the third kind with
index l. The parameter w represents the width of the distribution, s is an ef-
fective size parameter, and m is the order of the distribution, which can be an
arbitrary real number (e.g., the standard inverse Gaussian distribution used in
the Malkmus model [3] has order ÿ3=2). This distribution is normalized by the
conditionZ 1

0
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The moments of the distribution (1) have simple analytical form

hrmi �
Z 1

0

rmnm�r� dr � bmsm; where bm � bm�w� � Km�1�m�1=w�
K1�m�1=w� : �4�

The e�ective radius and variance [1] are de®ned as
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they have the following form for the generalized inverse Gaussian distribu-
tion (1):

reff � b3

b2

� s � K4�m�1=w�
K3�m�1=w� s; �6a�

veff � b4b2

b2
3

ÿ 1 � K5�m�1=w�K3�m�1=w�
K2

4�m�1=w� ÿ 1: �6b�

Knowledge of the e�ective radius and variance obtained for example by
means of remote sensing together with the aerosol optical depth s (at some
reference wavelength k) allows us to calculate such an important physical
quantities as the aerosol column mass loading per unit area

M � 4

3
reffq

s�k�
Qext�k; reff ; veff� ;

where q is the aerosol speci®c density and Qext is the extinction e�ciency factor
that can be computed in the framework of Mie theory given reff and veff . (Note,
that the ratio s=Qext is spectrally invariant.)

Asymptotic behavior of reff and veff as functions of s and w in the limits
w ! 0 and w ! 1 is determined by the properties of the modi®ed Bessel
function Kl [8]

Kl�z� �
�����
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eÿz 1

�
� 4l2 ÿ 1

8z
� � � �

�
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Kl�z� � 1
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2

� �ÿl
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It follows from (7a) that in the case of very narrow distribution (w ! 0)
reff ! s, veff ! 0. In the limit of very wide distribution (w ! 1) the as-
ymptotic limits of reff and veff have simple expressions in the following cases:

reff � 2�3� m�ws for m > ÿ3 and reff � ÿ 1

2�4� m�w
ÿ1s for m < ÿ4;

�8�

veff � 1

3� m
for m > ÿ3 and veff � ÿ 1

5� m
for m < ÿ5: �9�

The last formula shows the upper bound for veff as a function of m. Note that
the e�ective variance is unbounded when ÿ5 < m < ÿ3. The asymptotic value
of reff becomes a decreasing function of w when m < ÿ7=2.

The restricted range of the e�ective variance clearly reduces the practical
utility of the distributions with large positive and negative orders. Nevertheless,
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the range of m for which the maximal value of veff is reasonably large, is still
quite wide: e.g., max�veff� > 0:2 for all m between ÿ9:5 and 1.5.

3. Half-integer orders

Expressions for the moments of the generalized inverse Gaussian distribu-
tion become substantially simpler when the order m is half-integer, i.e.,

m � nÿ 1

2
; �10�

where n is an integer. In this case modi®ed Bessel functions Kl can be expressed
in terms of elementary functions [8]
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�����
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This allows us to express the distribution function (1) as well as its moments
and e�ective radius and variance in terms of certain polynomials Pm�w�
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hrmi � bmsm; where bm � Km�n�1=2�1=w�
Kn�1=2�1=w� �

Pm�n�w�
Pn�w� ; �12�

reff � Pn�3�w�
Pn�2�w� � s; veff � Pn�4Pn�2

P 2
n�3

ÿ 1: �13�

The polynomials Pm�w� are de®ned by the following formulas:

Pm�w� �
Xm

k�0

�m� k�!
2kk!�mÿ k�! wk; �14a�

when m P 0 and

Pm�w� � Pÿmÿ1�w�; �14b�
when m < 0. (The last relation follows from the symmetry property of the
modi®ed Bessel functions: Km�z� � Kÿm�z�.) These polynomials obey the fol-
lowing recursive relations:

Pm�1�w� � �2m� 1�wPm�w� � Pmÿ1�w�; �15�

w2P 0m�w� � �mwÿ 1�Pm�w� � Pmÿ1: �16�
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The ®rst several polynomials are

P0 � 1;

P1 � 1� w;

P2 � 1� 3w� 3w2;

P3 � 1� 6w� 15w2 � 15w3;

P4 � 1� 10w� 45w2 � 105w3 � 105w4;

P5 � 1� 15w� 105w2 � 420w3 � 945w4 � 945w5:

It follows from the remarks in Section 2, that the upper bound of veff is
reasonably high (greater than 0.2) for the half-integer orders m � nÿ 1=2 over
the range where n � ÿ9;ÿ8; . . . ; 0; 1; 2.

Fig. 1 displays plots of the generalized inverse Gaussian distributions of the
order ÿ7=2 with reff � 1 and various e�ective variances. The plots in Fig. 2
show dependence of the distribution at hand on its order m when both e�ective
radius and variance are ®xed (reff � 1, veff � 0:2). It is seen that both the po-
sition and value of the distribution maximum decrease with order. Comparison
between the generalized inverse Gaussian distributions (of orders ÿ3=2 and
ÿ7=2) with the log-normal and gamma distributions are presented in Fig. 3
(again reff � 1 and veff � 0:2 for all distributions). The plots show that the

Fig. 1. The generalized inverse Gaussian distribution functions of the order ÿ7=2 with reff � 1 and

various e�ective variances.
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Fig. 3. Comparison between the generalized inverse Gaussian distributions (of orders ÿ3=2 and

ÿ7=2) with the log-normal and gamma distributions (reff � 1, veff � 0:2 for all distributions).

Fig. 2. Dependence of the generalized inverse Gaussian distribution on its order m for all plots

reff � 1, veff � 0:2.
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log-normal and the generalized inverse Gaussian distribution of the order ÿ7=2
are remarkably close approximations of each other especially when r � reff .

4. Speci®c cases

Below we present explicit formulas for the generalized inverse Gaussian
distribution of two speci®c orders. These are the standard (Malkmus model)
distribution that is currently used to model gaseous absorption [2±4], and the
special distribution (m � ÿ7=2) which closely resembles the commonly used
log-normal distribution.

4.1. Standard (Malkmus model) distribution (m � ÿ3=2)

In this case n � m� 1=2 � ÿ1 and Pn � Pÿ1 � P0 � 1. The distribution
function and reff and veff have the following forms:

nÿ3=2�r� � 1���������
2pw
p rÿ3=2s1=2 exp

1

2w
2
��
ÿ s

r
ÿ r

s

��
; �17�

reff � P2

P1

s � 1� 3w� 3w2

1� w
� s;

veff � P3P1

P 2
2

ÿ 1 � w�1� 6w� 12w2 � 6w3�
�1� 3w� 3w2�2 :

�18�

The e�ective variance in this case is bounded with the maximal value 2=3, and
reff � 3ws in the asymptotic value as w ! 1.

The density distribution (17) also happens to be the inverse Laplace trans-
form of the Malkmus band model transmission function [2,3]

T �u� � exp

"
ÿ pB

2

����������������
1� 4Su

pB

r 
ÿ 1

!#
; �19�

where B � 2=�pw� is the e�ective line half-width and S � s is the e�ective line
strength, the physical parameters that apply when the distribution is used to
represent gaseous absorption coe�cient strength. This transmission function
has provided a convenient formulation to model gaseous absorption in inho-
mogeneous media [3], particularly because of its useful feature that the density
(17) can be integrated in closed form to yield the cumulative density distri-
bution of absorption coe�cient strengths including also the corresponding
cumulative transmission function. This enables the transformation and sub-
division of the absorption coe�cient and transmission distributions into his-
togram form for convenient numerical computation without any loss of
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precision. We note here also that the Laplace transform of the density dis-
tribution (1) with an arbitrary m is a generalization of the transmission
function (19). The generalized transmission function also has simple analyt-
ical form and desirable properties, however the details are not relevant to the
present study.

4.2. Special distribution (m � ÿ7=2)

We would like to single out this particular distribution because its e�ective
radius and variance

reff � P0

Pÿ1

� s � s; veff � P1Pÿ1

P 2
0

ÿ 1 � P1 ÿ 1 � w �20�

coincide precisely with the distribution de®ning parameters s and w. As a result
this distribution is very convenient to use in that intermediate transformation
of parameters is not necessary. (The gamma distribution has similar proper-
ties.) In this case n � m� 1=2 � ÿ3 and Pn � Pÿ3 � P2 � 1� 3w� 3w2 and the
distribution function (Fig. 1) has the following form:

nÿ7=2�r� � rÿ7=2s5=2���������
2pw
p �1� 3w� 3w2� exp

1

2w
2
��
ÿ s

r
ÿ r

s

��
: �21�

As in the case of the log-normal distribution, the e�ective variance of the
distribution at hand is unbounded. We have already noted, that there is an
overall close resemblance of this distribution to the log-normal distribution for
moderate values of radius (see Fig. 3). However, in the asymptotic regime
(r ! 1) the function (21) falls faster then the log-normal distribution func-
tion. This has the practical advantage of better convergence of integrals in
numerical computations of radiative parameters.

5. Computational results

Illustrative results of Mie theory for the extinction e�ciency factor and
asymmetry parameter [1] are obtained for the generalized inverse Gaussian
particle size distributions of orders ÿ3=2 and ÿ7=2 and presented in Figs. 4
and 5. In both cases the calculations were performed at the reference wave-
length of 550 nm for a representative aerosol refractive index with nr � 1:4,
ni � 0 for full range of reff and veff that is also representative of atmospheric
aerosols.

As expected, the contour plots in Fig. 4(a) and (b) (corresponding to
m � ÿ3=2 and ÿ7=2, respectively) show great similarity of the extinction e�-
ciency factor for small values of e�ective variance. This is because the radiative
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parameters reff and veff (5a,b) were speci®cally de®ned to provide maximal
independence of the results on the size distributions used [1]. Comparison
between the two plots shows that larger di�erences occur only at relatively

Fig. 4. (a)The extinction e�ciency factor computed in the framework of the Mie theory (for 550

nm wavelength) using the generalized inverse Gaussian distribution of order ÿ3=2; (b) The same as

(a) but for the distribution of order ÿ7=2.
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large e�ective variances and for moderate values of reff � 0:5 lm (which cor-
respond approximately to the incident wavelength). Fig. 5(a) and (b) suggest
similar conclusions the asymmetry parameter computations.

Fig. 5. (a) The asymmetry parameter computed in the framework of the Mie theory (for 550 nm

wavelength) using the generalized inverse Gaussian distribution of order ÿ3=2; (b) The same as (a)

but for the distribution of order ÿ7=2.
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6. Discussion and conclusions

To be computationally useful, a size distribution must be both analytically
simple and have desirable mathematical properties such as sharp exponential
cut-o�s in small and large particle regimes. The singularity of the gamma
distribution at zero particle size for large values of e�ective variance and the
slow convergence of the log-normal distribution in large particle size regimes
are undesirable features of these commonly used distributions.

For most radiative transfer and remote sensing applications where particle
size information is expressed in terms of reff and veff , the speci®c form of the size
distribution rarely matters [1]. However, when there is a need to know the
particle number density in terms of radiative parameters, there may be a great
deal of uncertainty unless the form of the size distribution is known. For this
purpose the proposed three-parameter generalized inverse Gaussian size dis-
tribution o�ers the advantage of ¯exibility that allows us to quantify the de-
sired response of the computations to variations in the distribution functional
shape.

We have demonstrated the generalized inverse Gaussian density function to
be an analytically simple and ¯exible size distribution model. The obvious
advantages of this distribution are analytic form of the expressions for all of its
moments, e�ective radius and variance together with the smooth exponential
cut-o�s for both large and small particle sizes which keep the distribution non-
singular even at large e�ective variances (see Fig. 1). Unlike most size distri-
butions in current use in radiative calculations, the proposed functional form
has a third-parameter (order) in addition to e�ective radius and variance which
provides greater ¯exibility in ®tting di�erent distribution shapes (Fig. 2). For
example, the distribution of the order ÿ7=2 closely resembles the log-normal
distribution at moderate radii while having better asymptotic behavior in the
large particles regime. The e�ective variance of the generalized inverse
Gaussian distribution may be bounded (like veff of the gamma distribution) or
unbounded (like in the case of the log-normal distribution). The upper bound
of the e�ective variance is reasonably large (greater then 0.2) for wide range of
orders including the interval between ÿ9:5 and 1.5.

Analytical expressions for the moments of the generalized inverse Gaussian
distribution in the generic case contain ratios of modi®ed Bessel functions,
however for half-integer orders these expressions are simple ratios of polyno-
mials. The class of such distributions includes the original inverse Gaussian
distribution (m � ÿ3=2) and the special distribution (m � ÿ7=2) which e�ective
radius and variance exactly coincide with the formal distribution parameters s
and w that makes the use of this distribution very convenient.

As a practical example we compare extinction e�ciency factors and asym-
metry parameters computed for two di�erent orders of the proposed distri-
bution function. While showing the expected coincidence of the radiative
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parameters for small e�ective variances the results of the comparison also in-
dicate some di�erences, especially for moderate reff and large veff . Such di�er-
ences being relatively small still may be important in some remote sensing
applications (especially in sensitivity studies), where using of the proposed size
distribution can help to quantitatively estimate uncertainties of the retrievals
due to a di�erence between the actual and model size distribution shapes.
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